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INTRODUCTION

The National Transonic Facility (NTF) has three centrifugal multi-

stage pumps to supply liquid nitrogen to the wind tunnel. Reliability

of these pumps is critical to the facility operation and test capability.

Therefore, a highly desirable goal is to be able to detect a pump

rotating component problem (associated with excessive vibration of

the pump) as early as possible during normal operation and avoid

serious damage to other pump rotating components. If a problem

can be detected before serious damage occurs, the repair cost and the

downtime could be reduced significantly.

Currently, the tunnel operator monitors only the pump frequency

_ amplitude. If this amplitude exceeds a predetermined value, the
pump is immediately shut down without knowing the true cause of

the problem. One potential method for the early detection of a pump

rotating component problem is through real-time monitoring of the

performance of the pump. Changes in the amplitudes at certain

critical frequencies could be used as a means of detecting a pump

rotating component problem, and allow for the pump to be stopped

before a failure occurs. Data containing these amplitudes are

available from frequency scans generated by accelerometers

attached to the pumps, but there are currently no techniques

available to use this data in predicting a pump failure.

The purpose of this research project is to investigate an approach for

developing a neural network-based tool for monitoring pump

performance and aid in predicting pump failure. Once trained with

known inputs and known outputs, neural networks can process many

combinations of input values other than those used for training very

rapidly to approximate previously unknown output values.

Therefore, the neural network can be applied to establish

relationships among the critical frequencies and serve as an aid in

predicting pump failures.

This paper presents the initial results from this research project.

Data from frequency scans taken from typical tunnel operations were

used to develop training pairs for training a back-propagation neural

network. After training, various combinations of critical pump

frequencies were propagated through the neural network. The

approximated output was used to create a contour plot depicting the

relationships of the input frequencies to the output pump frequency.

This plot would enable a tunnel operator to visually monitor the
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pump performance based on the operational frequencies and
potentially predict a failure.

FORMULATION OF FREQUENCY RELATIONSHIPS

The three NTF centrifugal multi-stage pumps (designated P1, P2, and

P3) are shown in figure 1.

Pumps

Tunnel Circuit

Figure 1 - NTF liquid nitrogen supply pumps.

To establish a viable method for predicting a pump failure, the

critical frequency ranges must be determined. Experience has shown

that responses in the neighborhood of five frequencies are the most

critical in detecting a pump rotating component problem (ref. 1).

They are:

(1) the fundamental train frequency - FTF

(2) the ball pass frequency of the inner race

(3) the ball pass frequency of the outer race

(4) the ball spin frequency - B SF

(5) the pump frequency - PF

BPFI

BPFO
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FTF is the frequency with which the balls revolve as a set. The ball
pass frequency is the frequency with which a single ball passes a
given point. The race is the channel where the balls rotate. Thus,
BPFI and BPFO are the respective ball pass frequencies for the inner
and outer races. BSF is the angular velocity of an individual ball.
The neighborhoods for these four frequencies are around 8Hz, 13Hz,
58Hz, and 72Hz, respectively. The amplitude (eq. 1) of the response
at the pump frequency (about 29Hz) is related to the amplitudes at
the first four frequencies defined above, but the exact relationship is
unknown at this time.

Amplitude at PF = a*(amp, at FTF) + b*(amp, at BPFI) +
c*(amp, at BPFO) + d*(amp, at BSF)

(:)

where a,b,c, and d are unknown coefficients

Currently, when the tunnel is in operation, the tunnel operators are

able to obtain real-time log charts from frequency scans, such as the

one shown in figure 2.

5.000

BPF! (13 Hz) BPFO (58 I_iz)

FTF (8 Hz) PF (29 Hz) BSF (72 Hz)

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

Figure 2 Sample frequency scan.

The x-axis of the scan represents frequencies from 0 Hz to 100 Hz.

The y-axis indicates the amplitude at each frequency. The largest

amplitude at each of the above frequency neighborhoods is
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measured, however the tunnel operator monitors only the PF
amplitude. If this amplitude exceeds a predetermined value, the
pump is immediately shut down without knowing the true cause of
the problem. The cause is not discovered until the pump is repaired
and a scan is made of the data tapes to indicate the relationship of
the pump frequency to the four frequencies defined above. No
techniques are currently available to monitor or predict pump
failure.

NEURAL NETWORK

A neural network was developed as an aid in understanding the
relationship among the five different frequencies. Once this
relationship is better understood, it could be used in predicting pump
failure. NETS (ref. 2), a back propagation neural network (ref. 3,4)
developed at NASA Johnson Space Center, was chosen as the software
package. NETS uses a sigmoid function as the activation function,
therefore all data must be scaled between 0.1 and 0.9.

Configuration

The configuration of the neural network is shown in figure 3. There

are four nodes on the input layer corresponding to the amplitudes

for the FTF, BPFI, BPFO, and BSF frequencies. Ten nodes (arbitrarily

chosen) are on the hidden layer to allow for the non-linearity of the

problem. The output layer has one node corresponding to the

amplitude for PF. The lines between the nodes represent unknown

weights corresponding to the unknown coefficients from eq. 1. NETS

initially generates random numbers for these weights. After

training, the weights will represent a relationship among the four

input nodes and the output node.
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Figure 3 - Neural network for NTF pump frequency responses.

Training the Neural Network

Training pairs must be selected for training the neural network. For

this network, a training pair is a set of four known input values and

their corresponding known output value. To train the network, an

output value is computed from the known input values and the

random weights. This computed output is then compared to the

known output. A change in the weights is computed and propagated

back through the neural network. The modified weights are then

used with the known inputs to compute another output value. This

process continues until the root mean square (RMS) difference

between the known output and the computed output converges to

some given tolerance, arbitrarily chosen to be .001 for this problem.

Five accelerometers are used in each pump to measure the

amplitudes of vibration and generate frequency scans (figure 2). For

this initial investigation, it was decided to try and model the problem

with six training pairs. These six pairs to be used in training the

neural network were created by interpreting data (arbitrarily

chosen) from these frequency scans. The set of scaled training pairs
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is shown in table 1. The first five pairs were taken from scans when
the pump was running normally. The sixth pair was taken after a
problem had occurred. All data has been scaled between 0.1 and 0.9.

Amplitudes
at Frequency

Training Pairs

1 2 3 4 5 6

FTF .226 .112 .416 .204 .127 .235

BPFI .684 .278 .724 .551 .170 .213
Input

BPFO .100 .290 .312 .161 .359 .220

BSF .166 .167 .213 .178 .138 .125

Output Pump .550 .644 .593 .649 .650

Table 1 - Training pair data from frequency scans.

.892

RESULTS

Once trained, the neural network was applied to create the contour

plot for displaying the relationship among the five frequencies. Data

for the contour plot were generated by propagating various

combinations of the amplitudes of the four input frequencies through

the weights of the neural network to compute the output amplitude

of the pump frequency. The contours on the plot are divided into

three shades to indicate different amplitudes of the pump frequency.

White indicates everything is normal, gray indicates a warning zone,

and black indicates danger and the pump should be stopped before

entering this zone.

Figure 4 is given to explain how to read this type of a contour plot.

In this example, only a portion of the frequency ranges are

displayed. The two boxes with number represent a unique

combination of the four frequencies. The color of one box would

represent the amplitude of the pump frequency when the

amplitudes at: FTF equals 0.1, BPFI equals 0.7, BPFO equals 0.1, and

BSF equals 0.8. The color of the other box would represent the

amplitude of the pump frequency when the amplitudes at: FTF

equals 0.2, BPFI equals 0.1, BPFO equals 0.2, and BSF equals 0.1.
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Figure 4 Explanation of contour plot.

The contour plot developed from the neural network trained with

the above set of training pairs is shown in figure 5. The x-axis

contains ranges of amplitudes at FTF and BPFI. The amplitude at

FTF is set at 0.1 while the amplitude at BPFI increases from 0.1 to 0.9

in 0.1 increments. The amplitude at FTF is then increased to 0.2 and

the amplitude at BPFI is again incremented from 0.1 to 0.9. This

process continues until all combinations of the FTF and BPFO scaled

amplitudes ranging from 0.1 to 0.9 in increments of 0.1 are

represented on the x-axis. The y-axis similarly contains the

amplitude ranges at BPFO and BSF. Therefore, each box on the

contour plot represents a unique combination of amplitudes of the

four input frequencies, with the shade of the box representing the

computed output value of the amplitude of the pump frequency.

Thus, in a single contour, the operator can visualize the relationships

among all five frequencies. For example, the results shown in the

figure indicate that when the FTF amplitude is low and the BPFO

amplitude is high (upper left corner) there is no problem, regardless
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of the amplitudes of the other two frequencies. On the other hand, if

the FTF amplitude frequency is high and the BPFO amplitude is low

(lower right corner) there is a problem, again regardless of the

amplitudes of the other two frequencies. The frequency scan would

determine the amplitudes of the four input frequencies and place a

pointer on the appropriate box of the plot. If the operator notices

that the points are drifting towards either a warning or a danger

zone, then the pumps can be shut down before a serious problem

occurs. By knowing the amplitudes when the problem began, the

cause of the problem can be anticipated.

Am=21ilLIdes at

BPFO & BSF

Oanger

Warning

Normal

Amplitudes at FTF & BPFI

Figure 5 Contour plot of pump frequency amplitudes.
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CONCLUDING REMARKS

This project is a first step in developing a neural network-based tool

to aid in predicting NTF pump failures. A neural network is

developed and trained with data obtained from frequency scans

generated by accelerometers placed in the pumps. The neural

network, trained with six training pairs, represents the relationship

between the pump frequency and four other frequencies that are

critical in detecting a pump rotating component problem. A contour

plot which graphically displays this relationship was created as an

aid in predicting pump failure.

To become operational, a computer with this display and

Analog/Digital boards would have to be connected to the c..urrent

accelerometer data collection system. The accelerometer data would

then appear as points on the display and enable the tunnel operators

to watch as any combination of frequencies begin moving toward a

danger zone and stop the pump before a failure occurs. Also, the

data could be used to plot a history of pump performance, thus

assisting in the scheduling of preventive maintenance. This

technique could potentially be applied to any other facility where

frequency monitoring is critical. For example, it could be expanded

to other wind tunnels that use pumps, fans, or similar rotating

equipment.

Results from this study have contributed to the development of a

tool for monitoring pump performance and predicting potential

pump failures through the application of neural networks. Further

studies of increased complexity, such as the use of additional training

pairs, are necessary since the initial training with six training pairs is

probably not sufficient to accurately predict a pump failure. The

inclusion of training pairs created with currently available data from

previous pump failures would be particularly desirable.
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